Construct the server.
The name for this server.
Automatically set as a listener for the 'connection' event.
Construct the server.
The name for this server.
The options for the internal server.
Indicates whether half-opened TCP connections are allowed. Default: false.
Indicates whether the socket should be paused on incoming connections. Default: false.
Automatically set as a listener for the 'connection' event.
The name of this server. This is set as the first argument of the Server's constructor.
The internal net.Server that powers this instance.
The sockets map for this server. Each value is a ServerSocket instance that identifies as an incoming connection to the server.
The status of this server.
Sets or gets the default captureRejection value for all emitters.
This symbol shall be used to install a listener for only monitoring 'error'
events. Listeners installed using this symbol are called before the regular
'error'
listeners are called.
Installing a listener using this symbol does not change the behavior once an
'error'
event is emitted, therefore the process will still crash if no
regular 'error'
listener is installed.
The close listener.
Connection listener.
The received socket
Error listener.
The error received.
Alias for emitter.on(eventName, listener)
.
Broadcast a message to all connected sockets from this server.
The data to send to other sockets.
The options for this broadcast.
Disconnect the server and rejects all current messages.
Emits raw data received from the underlying socket.
Emits a server open event.
Emits a server close event.
Emits a server error event.
Emits a connection made and set up to the server.
Emits a disconnection of a client from the server.
Emits a parsed NodeMessage instance ready for usage.
Returns an array listing the events for which the emitter has registered
listeners. The values in the array are strings or Symbol
s.
const EventEmitter = require('events');
const myEE = new EventEmitter();
myEE.on('foo', () => {});
myEE.on('bar', () => {});
const sym = Symbol('symbol');
myEE.on(sym, () => {});
console.log(myEE.eventNames());
// Prints: [ 'foo', 'bar', Symbol(symbol) ]
Get a NodeSocket by its name or Socket.
The NodeSocket to get.
Returns the current max listener value for the EventEmitter
which is either
set by emitter.setMaxListeners(n)
or defaults to defaultMaxListeners.
Check if a NodeSocket exists by its name of Socket.
The NodeSocket to get.
Create a server for this Node instance.
Returns the number of listeners listening to the event named eventName
.
The name of the event being listened for
Returns a copy of the array of listeners for the event named eventName
.
server.on('connection', (stream) => {
console.log('someone connected!');
});
console.log(util.inspect(server.listeners('connection')));
// Prints: [ [Function] ]
Emitted when the server receives data.
Emitted when the server opens.
Emitted when the server closes.
Emitted when an error occurs.
Emitted when a new connection is made and set up.
Emitted when a client disconnects from the server.
Emitted when the server receives and parsed a message.
Emitted when the server receives data.
Emitted when the server opens.
Emitted when the server closes.
Emitted when an error occurs.
Emitted when a new connection is made and set up.
Emitted when a client disconnects from the server.
Emitted when the server receives and parsed a message.
Emitted when the server receives data.
Emitted when the server opens.
Emitted when the server closes.
Emitted when an error occurs.
Emitted when a new connection is made and set up.
Emitted when a client disconnects from the server.
Emitted once when a server is ready.
Emitted when the server receives and parsed a message.
Adds the listener
function to the beginning of the listeners array for the
event named eventName
. No checks are made to see if the listener
has
already been added. Multiple calls passing the same combination of eventName
and listener
will result in the listener
being added, and called, multiple
times.
server.prependListener('connection', (stream) => {
console.log('someone connected!');
});
Returns a reference to the EventEmitter
, so that calls can be chained.
The name of the event.
The callback function
Adds a one-timelistener
function for the event named eventName
to the_beginning_ of the listeners array. The next time eventName
is triggered, this
listener is removed, and then invoked.
server.prependOnceListener('connection', (stream) => {
console.log('Ah, we have our first user!');
});
Returns a reference to the EventEmitter
, so that calls can be chained.
The name of the event.
The callback function
Returns a copy of the array of listeners for the event named eventName
,
including any wrappers (such as those created by .once()
).
const emitter = new EventEmitter();
emitter.once('log', () => console.log('log once'));
// Returns a new Array with a function `onceWrapper` which has a property
// `listener` which contains the original listener bound above
const listeners = emitter.rawListeners('log');
const logFnWrapper = listeners[0];
// Logs "log once" to the console and does not unbind the `once` event
logFnWrapper.listener();
// Logs "log once" to the console and removes the listener
logFnWrapper();
emitter.on('log', () => console.log('log persistently'));
// Will return a new Array with a single function bound by `.on()` above
const newListeners = emitter.rawListeners('log');
// Logs "log persistently" twice
newListeners[0]();
emitter.emit('log');
Removes all listeners, or those of the specified eventName
.
It is bad practice to remove listeners added elsewhere in the code,
particularly when the EventEmitter
instance was created by some other
component or module (e.g. sockets or file streams).
Returns a reference to the EventEmitter
, so that calls can be chained.
Removes the specified listener
from the listener array for the event namedeventName
.
const callback = (stream) => {
console.log('someone connected!');
};
server.on('connection', callback);
// ...
server.removeListener('connection', callback);
removeListener()
will remove, at most, one instance of a listener from the
listener array. If any single listener has been added multiple times to the
listener array for the specified eventName
, then removeListener()
must be
called multiple times to remove each instance.
Once an event is emitted, all listeners attached to it at the
time of emitting are called in order. This implies that anyremoveListener()
or removeAllListeners()
calls after emitting and_before_ the last listener finishes execution will
not remove them fromemit()
in progress. Subsequent events behave as expected.
const myEmitter = new MyEmitter();
const callbackA = () => {
console.log('A');
myEmitter.removeListener('event', callbackB);
};
const callbackB = () => {
console.log('B');
};
myEmitter.on('event', callbackA);
myEmitter.on('event', callbackB);
// callbackA removes listener callbackB but it will still be called.
// Internal listener array at time of emit [callbackA, callbackB]
myEmitter.emit('event');
// Prints:
// A
// B
// callbackB is now removed.
// Internal listener array [callbackA]
myEmitter.emit('event');
// Prints:
// A
Because listeners are managed using an internal array, calling this will
change the position indices of any listener registered after the listener
being removed. This will not impact the order in which listeners are called,
but it means that any copies of the listener array as returned by
the emitter.listeners()
method will need to be recreated.
When a single function has been added as a handler multiple times for a single
event (as in the example below), removeListener()
will remove the most
recently added instance. In the example the once('ping')
listener is removed:
const ee = new EventEmitter();
function pong() {
console.log('pong');
}
ee.on('ping', pong);
ee.once('ping', pong);
ee.removeListener('ping', pong);
ee.emit('ping');
ee.emit('ping');
Returns a reference to the EventEmitter
, so that calls can be chained.
Send a message to a connected socket.
The label name of the socket to send the message to.
The data to send to the socket.
The options for this message.
By default EventEmitter
s will print a warning if more than 10
listeners are
added for a particular event. This is a useful default that helps finding
memory leaks. The emitter.setMaxListeners()
method allows the limit to be
modified for this specific EventEmitter
instance. The value can be set toInfinity
(or 0
) to indicate an unlimited number of listeners.
Returns a reference to the EventEmitter
, so that calls can be chained.
Returns a copy of the array of listeners for the event named eventName
.
For EventEmitter
s this behaves exactly the same as calling .listeners
on
the emitter.
For EventTarget
s this is the only way to get the event listeners for the
event target. This is useful for debugging and diagnostic purposes.
const { getEventListeners, EventEmitter } = require('events');
{
const ee = new EventEmitter();
const listener = () => console.log('Events are fun');
ee.on('foo', listener);
getEventListeners(ee, 'foo'); // [listener]
}
{
const et = new EventTarget();
const listener = () => console.log('Events are fun');
et.addEventListener('foo', listener);
getEventListeners(et, 'foo'); // [listener]
}
A class method that returns the number of listeners for the given eventName
registered on the given emitter
.
const { EventEmitter, listenerCount } = require('events');
const myEmitter = new EventEmitter();
myEmitter.on('event', () => {});
myEmitter.on('event', () => {});
console.log(listenerCount(myEmitter, 'event'));
// Prints: 2
The emitter to query
The event name
```js const { on, EventEmitter } = require('events');
(async () => { const ee = new EventEmitter();
// Emit later on process.nextTick(() => { ee.emit('foo', 'bar'); ee.emit('foo', 42); });
for await (const event of on(ee, 'foo')) { // The execution of this inner block is synchronous and it // processes one event at a time (even with await). Do not use // if concurrent execution is required. console.log(event); // prints ['bar'] [42] } // Unreachable here })();
Returns an `AsyncIterator` that iterates `eventName` events. It will throw
if the `EventEmitter` emits `'error'`. It removes all listeners when
exiting the loop. The `value` returned by each iteration is an array
composed of the emitted event arguments.
An `AbortSignal` can be used to cancel waiting on events:
```js
const { on, EventEmitter } = require('events');
const ac = new AbortController();
(async () => {
const ee = new EventEmitter();
// Emit later on
process.nextTick(() => {
ee.emit('foo', 'bar');
ee.emit('foo', 42);
});
for await (const event of on(ee, 'foo', { signal: ac.signal })) {
// The execution of this inner block is synchronous and it
// processes one event at a time (even with await). Do not use
// if concurrent execution is required.
console.log(event); // prints ['bar'] [42]
}
// Unreachable here
})();
process.nextTick(() => ac.abort());
The name of the event being listened for
that iterates eventName
events emitted by the emitter
Creates a Promise
that is fulfilled when the EventEmitter
emits the given
event or that is rejected if the EventEmitter
emits 'error'
while waiting.
The Promise
will resolve with an array of all the arguments emitted to the
given event.
This method is intentionally generic and works with the web platform EventTarget interface, which has no special'error'
event
semantics and does not listen to the 'error'
event.
const { once, EventEmitter } = require('events');
async function run() {
const ee = new EventEmitter();
process.nextTick(() => {
ee.emit('myevent', 42);
});
const [value] = await once(ee, 'myevent');
console.log(value);
const err = new Error('kaboom');
process.nextTick(() => {
ee.emit('error', err);
});
try {
await once(ee, 'myevent');
} catch (err) {
console.log('error happened', err);
}
}
run();
The special handling of the 'error'
event is only used when events.once()
is used to wait for another event. If events.once()
is used to wait for the
'error'
event itself, then it is treated as any other kind of event without
special handling:
const { EventEmitter, once } = require('events');
const ee = new EventEmitter();
once(ee, 'error')
.then(([err]) => console.log('ok', err.message))
.catch((err) => console.log('error', err.message));
ee.emit('error', new Error('boom'));
// Prints: ok boom
An AbortSignal
can be used to cancel waiting for the event:
const { EventEmitter, once } = require('events');
const ee = new EventEmitter();
const ac = new AbortController();
async function foo(emitter, event, signal) {
try {
await once(emitter, event, { signal });
console.log('event emitted!');
} catch (error) {
if (error.name === 'AbortError') {
console.error('Waiting for the event was canceled!');
} else {
console.error('There was an error', error.message);
}
}
}
foo(ee, 'foo', ac.signal);
ac.abort(); // Abort waiting for the event
ee.emit('foo'); // Prints: Waiting for the event was canceled!
By default EventEmitter
s will print a warning if more than 10
listeners are
added for a particular event. This is a useful default that helps finding
memory leaks. The EventEmitter.setMaxListeners()
method allows the default limit to be
modified (if eventTargets is empty) or modify the limit specified in every EventTarget
| EventEmitter
passed as arguments.
The value can be set toInfinity
(or 0
) to indicate an unlimited number of listeners.
EventEmitter.setMaxListeners(20);
// Equivalent to
EventEmitter.defaultMaxListeners = 20;
const eventTarget = new EventTarget();
// Only way to increase limit for `EventTarget` instances
// as these doesn't expose its own `setMaxListeners` method
EventEmitter.setMaxListeners(20, eventTarget);
Generated using TypeDoc
The server that receives connections.